Soal& Jawaban PTS/UTS MATEMATIKA Kelas 9 Semester 2 K-13. Keterangan : Apabila terdapat ketidaksesuaian pada soal-soal PTS/UTS diatas, silahkan sesuaikan dengan kebijakan sekolahnya masing-masing. Demikian yang dapat admin sampaikan terkait informasi Soal PTS/UTS MATEMATIKA Kelas 9 Semester 2 SMP/MTs Beserta Jawaban, semoga bermanfaat . . .*) 12,4,8,16,32 ,.B. Macam - macam Barisan Bilangan Rumus Suku Tengah Barisan Aritmatika. Inti atau kunci dari pembahasan kali ini adalah bahwasannya pertama kali kita kenali bagaimana bntuk barisan aritmatika dan bagaimana bentuk barisan geometri . Setelah faham , maka selanjutnya baru pelajari bagaimana rumus - rumusnya dan C 2. suku tengah pada barisan geometri Hasil dari : 1 + 3 + 5 + . + 31 4. Hasil dari : 2 + 4 + 6 + . + 40 20. 1. Bilangan Asli : 2. Genap yang ke 1 sampai ke 20 adalah : 2 + 4 + 6 + . + 40 = 420 22. Deret Geometri adalah jumlah bilangan-bilangan yang terdapat pada Barisan Geometri. Bentuk Umum Barisan Geometri : a , ar , ar2 cash. Berikut ini adalah artikel yang berisi tentang Suku Tengah Barisan Aritmatika Beserta Contoh Soal yuk disimak cuz! Suku Tengah Barisan Aritmatika Beserta Contoh Soal - Hai kalian pasti lagi nyari cara buat nentuin Suku Tengah Barisan Aritmatika Beserta Contoh Soal yapz kali ini bakalan bahas materi buat nentuin rumus dan contoh soalnya Pengertian dan Rumus Suku Tengah Barisan Aritmatika Kalian pasti ngga asing dengan yang namanya Suku Tengah, nah sesauai namanya Suku Tengah Barisan Aritmatika adalah sebuah suku yang terletak di tengah dalam Barisan Aritmatika. Namun perlu temen-temen perhatikan Suku Tengah Barisan Aritmatika hanya ada pada Barisan Aritmatika yang jumlah sukunya ganjil. Nah Barisan Aritmatika ini biasanya di lambangkan dengan Ut, gimana kalian udah mulai pahamkan sama pengertiannya kali ini Rumus Suku Tengah Barisan Aritmatika Rumus Suku Tengah Barisan Aritmatika oh iya kurang lengkap dan kurang paham nih kalo bahas langsung di contoh soalnya langsung aja kita ke contoh soalnya agar bisa dan makin paham Contoh Soal Suku Tengah Barisan Aritmatika 1. Diketahui barisan aritmatika 2, 8, 14, 20, 26, 32, 38 tentukan nilai suku tengah dari barisan aritmatika tersebut! JawabDiketahuia suku awal = 2Un suku ke -n akhir = 38 Maka Suku Tengah Barisan Aritmatika tersebut Sehingga nilai Suku Tengah Barisan Aritmatika tersebut yaitu Ut = 20. 2. Diketahui barisan aritmatika 3, 10, 17, 24, 31 tentukan nilai suku tengah dari barisan aritmatika tersebut! JawabDiketahuia suku awal = 3Un suku ke -n akhir = 31 Maka Suku Tengah Barisan Aritmatika tersebut Sehingga nilai Suku Tengah Barisan Aritmatika tersebut yaitu Ut = 17. 3. Diketahui barisan aritmatika 3, 6, 9, 12, .....,81 -Tentukan nilai suku tengah dari barisan aritmatika tersebut?-Tentukan suku keberapakan suku tengah dari barisan aritmatika tersebut? JawabDiketahuia suku awal = 3Un suku ke -n akhir = 81 Maka Suku Tengah Barisan Aritmatika tersebut Jadi Barisan Aritmatika memiliki suku tengah tersebut yaitu Ut = suku keberapa dari barisan aritmatika? JawabUt Suku Tengah = 42b Beda = 3a Suku pertama = 3 Untuk mencari suku keberapa barisan tersebut dapat dicari dengan rumus suku ke -t Ut = a + t - 1b42 = 3 + t - 1342 = 3 + 3t - 342 = 3t3t = 42t = 42/3t = 14 Jadi Suku Tengah Barisan Aritmatika tersebut terletak pada suku ke 14. 4. Diketahui barisan aritmatika 2, 4, 6, 8, .....,70 -Tentukan nilai suku tengah dari barisan aritmatika tersebut?-Tentukan suku keberapakan suku tengah dari barisan aritmatika tersebut? JawabDiketahuia suku awal = 2Un suku ke -n akhir = 70 Maka Suku Tengah Barisan Aritmatika tersebut Sehingga nilai Suku Tengah Barisan Aritmatika tersebut yaitu Ut = keberapakan suku tengah dari barisan aritmatika tersebut JawabUt Suku Tengah = 36b Beda = 2a Suku pertama = 2 Untuk mencari suku keberapa barisan tersebut dapat dicari dengan rumus suku ke -t Ut = a + t - 1b36 = 2 + t - 1236 = 2 + 2t - 236 = 2t2t = 36t = 36/2t = 18 Jadi Suku Tengah Barisan Aritmatika tersebut terletak pada suku ke 14. 5. Tentukan suku tengah dan suku ke berapakah suku tengah tersebut dari barisan berikut 2,6,10,14.......82. ​Jawab Diketahuia suku awal = 2Un suku ke -n akhir = 82 Maka Suku Tengah Barisan Aritmatika tersebut Jadi Suku Tengah dari Barisan Aritmatika tersebut yaitu Ut = Tengah Barisan tersebut yaitu Ut = 42 Tentukan suku keberapa suku tengah tersebut JawabUt Suku Tengah = 42b Beda = 4a Suku pertama = 2 Mencari Suku keberapakah suku tengah tersebut dengan rumus suku ke -t Ut = a + t - 1b42 = 2 + t - 1442 = 2 + 4t - 444 = 4t4t = 44t = 44/4t = 11 Jadi Suku Tengah Barisan Aritmatika tersebut terdapat pada suku ke - 11. Bagaimana jika belum paham atau ada yang ingin ditanyakan? silahkan tanya di kolom komentar, terima kasih semoga bermanfaat. Pada artikel kali ini akan dibahas mengenai barisan kalian menjumpai barisan bilangan? Barisan bilangan seperti apa yang kalian lihat?Dalam kehidupan sehari-hari kita sering melihat berbagai bilangan. Beberapa dari bilangan-bilangan tersebut ada yang membentuk barisan 2, 4, 6, 8, … . Barisan bilangan tersebut disebut sebagai barisan bilangan genap. Mengapa barisan bilangan tersebut disebut sebagai barisan bilangan genap? Karena setiap sukunya dapat dibagi dengan bilangan 2 genap.Ada juga barisan lainnya yang disebut dengan barisan geometri. Untuk lebih memahami mengenai barisan geometri, pahami penjelasan berikut bagian sebelumnya, kalian telah diberikan contoh barisan bilangan. Berbagai jenis barisan bilangan memiliki karakteristik atau ciri tertentu yang membedakannya dengan barisan bilangan geometri merupakan barisan yang memiliki rasio antar sukunya. Misalnya pada barisan geometri berikut 6, 12, 24, 48, …Barisan bilangan tersebut merupakan barisan geometri dengan rasio selanjutnya akan dibahas mengenai contoh penerapan bsarisan Penerapan Barisan GeometriBarisan geometri banyak diterapkan dalam kehidupan sehari-hari. Barisan geometri dapat dimanfaatkan untuk menghitung ketinggian pantulan bola yang dijatuhkan dari ketinggian yang dijatuhkan pada ketinggian tertentu tersebut, tinggi pantulannya akan membentuk barisan geometri dengan rasio akan diuraikan terkait rumus yang digunakan pada barisan Barisan GeometriRumus barisan geometri untuk menentukan suku ke-n yaitu sebagai Barisan GeometriUn = a . rn-1KeteranganUn suku ke-n barisan geometri’a suku pertama barisan geometrir rasio barisan geometrin banyaknya suku pada barisan geometriBerikutnya akan dijelaskan mengenai suku tengah dan suku sisipan pada barisan Tengah Barisan GeometriSuku tengah barisan geometri hanya dapat ditentukan pada barisan geometri dengan banyak suku ganjil n ganjil. Misalnya pada barisan bilangan yang terdiri dari 3 suku 6, 18Suku tengah barisan geometri tersebut adalah 6. Bagaimana jika barisan geometri memeiliki suku yang sangat banyak? Untuk menentukan suku tengahnya perhatikan penjelasan barisan dengan banyak sukunya ganjilU1, U2, . . . . U2k-1Suku tengah barisan geometri dapat dirumuskan sebagaiRumus Suku Tengah Barisan GeometriKeteranganUk suku tengah barisan geometriU1 suku pertama barisan geometriU2k-1 suku ganjil terakhir dari barisan geometriBerikutnya aka dijelaskan mengenai suku sisipan pada barisan Sisipan pada Barisan GeometriTerdapat suatu barisan geometri. Jika di antara dua suku missal a dan b disisipkan sebanyak bilangan, maka rasio barisan geometri yang baru yaituRumus Suku Sisipan Barisan GeometriKeteranganr rasio barisan geometri yang baruk banyaknya suku sisipana dan b dua suku berurutan pada barisan geometri memahami konsep barisan geometri, pahami beberapa soal berikut untuk menguji pemahamanmu mengenai barisan Soal Barisan Geometri1. Suku kedua dan suku kelima dalam barisan geometri berturut-turut yaitu 3 dan 24. Tentukan suku ke-7 dari barisan ke-7 yaituUn = a . rn-1U7 = a . r6U7 = a . r4 . r2U7 = 24 . 4 = 96Jadi, suku ke-7 barisan geometri tersebut adalah Terdapat 5 suku dalam suatu barisan geometri dengan suku pertama 2 dan suku terakhirnya 162. Suku tengah barisan tersebut adalah ….PembahasanJadi, suku tengah barisan tersebut adalah Suatu barisan suku pertama dan suku keduanya yaitu 4 dan 324. Jika diantara kedua suku tersebut disisipkan 3 bilangan sehingga terbentuk barisan geometri yang baru, kemungkinan rasio barisan geometri yang baru adalah ….PembahasanJadi, kemungkinan rasio barisan geometri yang baru adalah -3 atau tadi pembahasan mengenai barisan geometri. Semoga informasi yang disampaikan memberikan tambahan pengetahuan bagi kalian semua. Terima kasih.

suku tengah dari barisan 1 2 4 256 adalah